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Abstract:

In this report, we demonstrate that bottom-up IPA's, image-processing algorithms, can perform a
new visual task .... to select and locate ROIs, regions-of-interests. This task has been defined on the

basis of a theory of top-down human vision, the scanpath theory. Further, using measures, --- Sp and
Ss, the similarity of location and ordering, respectively, ---- developed over the years in studying

human perception and the active looking role of eye movements, we could quantify the efficient and
efficacious manner that IPAs can imitate human vision in located ROIs.

The means to quantitatively evaluate IPA performance has been an important part of our study. In
fact, these measures were essential in choosing from the initial wide variety of IPAs, that particular one

that best serves for a type of picture and for a required task. It should be emphasized that the selection

of efficient IPAs has depended upon their correlation with actual human chosen ROIs for the same type
of picture and for the same required task accomplishment.

1.-INTRODUCTION

The tasks. There are three problems that we are trying to address: --- i) to assist the once-a-day
supervisory control procedures for the Mars Rover; ii) to enable robust autonomous control of the

Mars Rover during absence of earth control; iii) to assist in reducing the down-loaded Mars picture
data interpretation load when this becomes excessive, and thus aid in selecting amongst a large data set,

a smaller set wherein human navigational or geological study planning might be most productive.

An example of a daily plan for the navigational route was superimposed onto a picture of Mars

terrain obtained July 1997 (Figure 1); note, circle representing an IC, initial condition, position of the

Rover and square representing an intended goal of possible geological interest. This was the situation
facing the engineering supervisory controller for Rover navigation each day at the Earth-station; a

navigational plan next takes shape considering factors such gradient, possible hidden obstacles, energy
supplies, and above all, integrity of the Rover. This detailed route has to be planned (see x's along

path); but the real time trajectory must be accomplished by on-board control, allowing for local

modifications so as to minimize gradients and to provide for avoidance of obstacles. Also navigational
benchmarks may be placed (large asterisks) as future route markers to supplement existing landmarks

and to indicate features of possible geological interests.

Autonomous algorithms. Our overall goal has been to describe and document the methodology

we have employed in approximating top-down human vision with bottom-up autonomous IPAs, image
processing algorithms (Figure 2). The early experiments herein reported provide encouraging results

and suggest a number of future research tasks.



Figure 3" Terrain Pictures and ROIs chosen by Human Viewers.
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Scanpath Theory. Human vision relies on active looking eye movements organized into scanpaths

in order to check on the internal cognitive model of what a person was actually viewing. Our human
subjects were asked to choose important features or objects in terrain pictures presented to them:

particular geological and navigational tasks were specified since we found that different tasks called for
different features to be selected (Figure 3).

Selection of algorithms. A specific aim of this report is to describe how human vision experiments

can provide criteria for selection of appropriate IPAs. A wide variety of IPAs were applied to the same

terrain pictures and those IPAs that cohered most closely to human ROIs, region of interests, were
selected. The scheme for measuring similarities between humanly chosen, ROIs, noted as chROIs, and

IPA-identified ROIs, noted as aROIs, is carefully explained below.

2.- METHODS

2.1 Scanpath Theory and Human identification of ROIs

The scanpath theory suggests that a top-down internal cognitive model of what we see controls

perception and active looking eye movemnts, EMs. These EMs are an essential part of vision because
they must carry the fovea to each part of an image to be processed with high resolution. Thus, the

internal cognitive model drives our EMs in a repetitive sequential set of saccades and fixations, or
glances, over features, or region of interests, ROIs, of a scene or picture so as to check out and confirm

the model (see Noton and Stark, 1971). The present study differs from the standard scanpath EM

experiments: in fact, ROIs were identified by ordered sequences of cursor positioning over a picture.
This is "semi-classical" scanpath of top-down human vision depends upon conscious human choice and

the sequencing of the chROIs. Questions can be raised about the relationship between scanpaths

provided by sequences of human eye movement fixations and the ordered sequences of chROIs chosen
by cursor positioning.

The corpus of pictures we have used in this study consists of four Mars terrain pictures,
lm,2m,3m,4m, (Figures 2 and 3) taken by the July 4 th, 1997 Mars mission. We also used two pictures

of Earth terrain obtained from a preliminary NASA expedition to the Chilean desert, 5c,6c, (Figure 2,

upper). The definition of "terrain" has been widened by planetary geologists to include surfaces of

other planets. These were made available to us courtesy of Dr. Virginia Gulick, Planetary Geologist,
NASA-Ames Research Center. Superimposed on these pictures were seven chROIs, selected by
human observers, as containing subfeatures of special interest in the overall picture; arrows indicate the

sequence in which the chROIs were chosen (Figure 3).

The viewers were asked to consider themselves as being faced with a number of different tasks, such

as inspecting the pictures for general landforms or inspecting the pictures for possible navigable
pathways for a small Rover vehicle. The subjects were recruited from our laboratory personnel and

properly informed according to the rules of the Committee for the Protection of Human Subject of the
University of California, Berkeley, were all geologically nai've. Each was instructed to act as if he was

a planetary geologist and approached the pictures with a particular scientific or controller task in mind.

They were to answer in their own minds questions about the following tasks.

The first four .tasks were geological :--

1) general landform features?
2) characteristic of the rocks in the terrain structure. What is

their structure? Copious in amount? Having sharp or rounded edges?

3) evidence of sand or water action?
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4) strata or layered rocks or cliffs present?
For the last two tasks they were to act as if they were a supervisory controller planning a path for the

Mars Sojourner Rover moving on the surface of Mars:--

5) plan a path for the Rover vehicle on Mars terrain.
6) locate obstacles to such a path, especially obstacles that could

completely block the Rover or place it in jeopardy.

2.2 Terrain Pictures Processed by IPAs to obtain ordered aROIs

According to the Scanpath Theory, an intemal spatial-cognitive model of a scene or object controls

active looking and human perception in a top-down procedure. Our question was, " How closely can

we imitate this process using bottom-up IPAs?".

IPAs algorithms are usually intended to detect and localize specific features in a digital image in a
bottom-up fashion, analyzing for example, spatial frequency, texture conformation or other informative

values of loci of the visual stimulus. Many algorithms have been proposed in the literature and they

might be classified into three principal approaches (for a survey, see Haralick 1979, and Reed and Han

Du Buf, 1993). Firstly, structural approaches based on an assumptions that images have detectable and
recognizable primitives distributed according to some placement rules; examples are matched filters.

Secondly, statistical approaches based on statistical characteristics of the texture of the picture;

examples are co-occurrence matrices and entropy functions. Thirdly, model approaches that
hypothesize underlying processes for generation of local regions, and are analyzed on the basis of

specific parameters governing these generators: examples are fractal descriptors.

For the purpose of our present study, we have selected elements from this taxonomy in an attempt to
simulate certain aspects of human perception. A list of the algorithms used in this follows:

A_ Statistical kernels:

entrp -- entropy is calculated within a surrounding of the center pixel;
michaelson -- michaelson contrast generally considered to be an important choice feature for

human vision;

ortn - difference in the gray-level orientation, a statistical-type kernel, is analyzed in early
visual cortex;

lummax (lummin) - simply maxima (minima) in the luminance are detected.

B_ Structural kemels:

filtermask -- an x-like mask, positive along the two diagonals and negative elsewhere, was

convoluted with the image;

symm -- symmetry transform, appears to be a very prominent spatial relation;
edge -- concentration of edges per unit area;

lapl -- the laplacian of the gaussian is convoluted with the image.

C_ Wavelet kernels:

discrete wavelet transform: different wavelets (each with different numbers of vanishing

points) are taken into consideration (daubechies, biorthogonal, symlet): only three levels of
coefficients were retained.
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Figure 5: Illustration of Sp and Ss Similarities.

Two sets of ordered ROIs (left) whose loci are widely separated: low similarity. Two sets of

ROIs (middle) closely located but whose ordered sequences are different: Sp high, Ss low. Two sets

of ROIs (right) whose loci and ordered sequence are similar: Sp high, Ss high.

Sp mich ortn lmax lmin

entrp
mich

ortn

lmax

0.26 0.33 0.25 0.25 entrp 0.00 0.11 0.07 0.00
0.11 0.11 1.00 mich 0.00 0.02 1.00

0.11 0.11 ortn 0.00 0.00

0.13 lmax 0.02

Figure 6: Y-matrix of Sp (left): locus similarities of pairs of IPAs. Y-matrix of Ss (right):

string similarities of pairs of IPAs.



2.3 Clustering

First, the pictures were processed by each algorithm (Figure 2, left to right). Secondly, the IPAs

choose approximately 1000 local maxima pixels that cohere with the particular algorithm kernel most

closely. Third, a clustering algorithm was utilized (Figure 4) to reduce these thousand points down to
an ordered set of seven to eight clusters superimposed upon the original terrain scene. The fit of the

aROIs chosen by the algorithms (Figure 2, entropy, upper and symmetry, lower) onto important

subfeatures of these terrain pictures was depicted.

The initial set of local maxima was clustered connecting local maxima by gradually increasing the

acceptance radius for their joining (Figure 4). Partway through the clustering process the clusters have
been encircled in their wide extent (middle left), although further reduction, using the clustering

algorithm, occurs (middle right and lower left). Finally, each cluster inherits maximal value of its

component points. This provides an ordering as indicated by the arrows connecting the cluster loci
(right lower). The highest valued point of each cluster actually determines the final locus of the cluster.

2.4 Definition and use of Sp and Ss

The aROI loci selected by our different IP algorithms and the chROIs defined by humans can be

compared. A similarity measure for comparing these two sets of loci is Sp = 1 - 'd', where'd' is a
distance measure, summed over a set of 'di's, where each 'di' is a distance between an algorithm ROI
and an human identified ROI or between two algorithm ROIs or between two human identified ROIs.

Each 'di' is first calculated based upon a threshold distance, "di' = gamma. A 'di' is set equal to zero if
below the threshold and 1 if above. The threshold gamma was ascertained using k-mean evaluation of
EM fixation distances. The final value for 'di' is normalized based upon the value of the index i ,

which is equal to the string length. Finally, string editing similarities were defined by an optimization

algorithm and yield Ss similarity indices.

Various idealized Sp and Ss similarities for two sets of ordered ROIs (Figure 5) help to understand

these measures: --- low similarity for Sp and Ss (left);); high value for Sp but not for Ss (middle); high

similarity for Sp and Ss (right).

The Sp measure was used for similarities between the aROIs chosen by each pair of the IPAs, and
these values, varying between 1 and 0 were arranged in a matrix, the Y-matrix (Figure 6). The upper

right triangle of the matrix and the lower left triangle (omitted) were symmetrical; the diagonal
elements (also omitted) would all have the value, 1. Each matrix coefficient thus measures the

coherence between a pair of IPAs. In developing and selecting these IPAs we, of course, wished not to
have IPAs that cohere as these would be redundant, as for example in the case where the value of 1.00

shows identical function for lummax, maximal luminance, and mich, michaelson (Figure 6, fourth

column, second row, for both Sp and Ss matrices). Note also that in these Y-matrix, the values of Ss

were much lower than the values of Sp.

Average values for Sp for human identification of chROIs were usually assembled in a two by two
"parsing diagram". This display is perhaps best described in detail in connection with our Results.

2.5 ANOVA

In order to better evaluate and interpret the final results, we also used an Anova, analysis-of-
variance. The issue with Anova is whether or not the means of the observed data are different enough

from the random mean to conclude that the means of the distribution corresponding to the observed
data and the random data are different. The Anova value is compared with a critical value 'F' of a
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Figure 7: Action of Algorithms on Mars terrain.



Fisher distribution with k-I degree of freedom in the numerator (where k is the number of distributions
that we are comparing) and n-k in the denominator (where n is the total number of observations in the k

distributions). If the Anova test value is less than the F-Fisher critical value for a alpha level of

significance (for example, in this paper, alpha was set equals to 0.01), then it is possible to infer that
the two means are not different enough to come from different distributions; on the other hand, if the

Anova test value is greater than the F-Fisher critical value this signifies that the means likely come
from different distributions.

Our standard format for presenting our data in the parsing diagram (for example, we selected a data
set from Figure 9, upper left box) was as follows: 0.65 (0.05, 355.51) with 0.65 equal to the mean

value, 0.05 equal to +/- standard deviation, and 355.51 equal to the Anova test value. Our quantitative

conclusions presented in the result section below were strongly sustained by the relationship between
significant Anova test values and F-Fisher critical value (for alpha = 0.0 t) of 10.04.

3.- RESULTS

3.1 Action of Algorithms on Terrain Pictures

As described above, an IPA operateed on a picture and a transformed picture was obtained that

illustrates the action of the algorithm (Figure 7, right and Figure 2). This visual presentation was a way

of obtaining intuition as to the mathematical process of convoluting (or other procedure) the picture
pixels with the IPA process. The 1000 points with the maximal values were then used in the clustering

procedure, explained above, to obtain an ordered set of eight ROIs selected by that algorithm (shown
superimposed on the terrain picture, Figure 7, left column).

3.2 Relationships among the IPAs

We were, of course, interested in several aspects of the IPAs. The first was, we wishded to obtain

as wide a variety of IPAs as possible. Thus, we wanted the coherence between pairs of IPAs to be as

small as possible. In this way, our wide variety of IPAs would have •independent actions on the
pictures. Thus, they could serve to identify ROIs for a variety of picture types, and for a variety of
visual identification tasks.

Y-matrices. The coefficients of the Y-matrix (Figure 8) indicated the coherence between each pair

of algorithms as explained above. Whereas, the coefficients value of 1 (fourth column, second row)

demonstrated complete coherence between those two IPAs, the value of 0.26 for the coefficient
between the michaelson IPA and the entropy IPA (first column, first row) demonstrated moderate

independence. A string-editing similarity coefficient of zero (first column, first row) represents

complete independence of two compared sequences. Note again, that the coefficients for Ss (string-
editing similarity) were much lower than the coefficients for Sp. Note the horizontal and vertical lines

separate coherence values for different types of IPAs --- statistical, structural and wavelets.

Parsing diagram. The means of these coefficients could be put into a "parsing diagram" to help us

to understand the average coherences relating the same and different IPAs acting on the same and
different pictures (Figure 8 right).

For Sp, the repetitive, R, value of 1.00 (upper left box) defined the identical similarity for the same
IPA viewing the same picture. When the same IPA views different pictures, the similarity equals 0.13

(lower left box, I, idiosyncratic). Since there was no special reason why an algorithm should select the
same set of aROIs for different pictures, this low value was expected; for comparison as a bottom-
anchor for the scale, the random, Ra, value equaled 0.19 (right, lowest box). Different algorithms
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Figure 8: Y-matrices (left table) showing interrelationships among algorithms (Sp, upper and Ss,
lower). Parsing diagram for IPAs coherence (right).

The coefficients indicate the coherence between each pair of algorithms. For example, the
coefficient of 1.00 (4 th column, second row) indicates that the Michaelson IPA and the Lumin IPA

are identical. On the other hand, the value of 0.26 for the coefficient in the first column and first

row shows moderate coherence between the Michaelson IPA and the entropy IPA. Note that the

coefficients for Ss (string editing distance) are much lower than the coefficiems for Sp (see text).
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SAME TASK

Sp Ss

Same person Different persons Same person Different 3ersons

R

0.65 (0.05, 355.51)

I

0.32 (0.17, 7.48)

L

0.48 (0.08, 41.53)

0.32 (0.2, 7.26)

Ra

0.23 (O.O4)

G

F-Fisher critical value F(0.01) = 10.04

same

picture

different

pictures

R

0.23 (0.10, 54.83)

I

0.07 (0.09,2.89)

L

0.13 (0.02, 83.22)

G

0.09 (0.09,16.78)

Ra

0.04 (0.02)

DIFFERENT TASKS

Sp Ss

Same person Different persons Same person

R

0.38 (0.06, 66.55)

I

0.27 (0.12, 3.49)

L

0.36 (0.05, 30.96)

0.27 (0.09, 3.78)

0.23 (0.04)

G

Ra

same

picture

different

pictures

Different persons

R

0.10 (0.04, 24.52)

I

0.04 (0.06, 0.03)

I.

0.09 (0.04,22.16)

0.04 (0.09, 0.47)

Ra

0.04 (0.02)

G

F-Fisher critical value F(0.01) = 10.04

Figure 9: Parsing diagrams for human choice coherence and for the same (upper) and

different (lower) tasks; mean (standard deviation and F).
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Taskl, symm

Sp=0.5

Task2, mich

Sp = 0.88

Task3, symlet

Sp = 0.63

Figure 10: Examples of Excellent Prediction of Human ROIs Locations ('+') by IPAs (circles).
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Taskl, biorl

Sp = 0.13

Task3, db 10

Sp = 0

Figure 11: Examples of Poor Prediction of Human Locations by IPAs.
This poor correlation indicates the necessity of selection of algorithms on the basis of picture

type and task requirements, as documented in this report.
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Task/fig Sp

Rg.1 Fig.2 Fig.3 Fig.4 Rg.5 Fig.6 Mean

Task 1 0.19 0.26 0.25 0.37 0.05 0.60 0.29
Task 2 0.36 0.26 0.30 0.47 0.06 0.54 0.34
Task 3 0.04 0.40 0.12 0.33 0.01 0.43 0.22
Task 4 0.30 0.19 0.19 0.31 0.06 0.61 0.28
Task 5 0.18 0.41 0.33 0.34 0.09 0.40 0.30
Task 6 0.23 0.35 0.40 0.33 0.04 0.47 0.31

Mean 0.21 0.31 0.26 0.36 0.05 0.50 (0.29, 0.15, 23.53) tasks
(0.29, 0.04, 3.86) figures

Task/fig SS

Rg.1 Fig.2 Fig.3 Fig.4 Rg.5 Fig.6 Mean

Task 1 0.07 0.06 0.08 0.01 0. 0.05 0.05
Task 2 0.08 0.13 0.04 0.11 0.04 0.05 0.08
Task 3 0. 0.08 0.02 0.05 0. 0.02 0.03
Task 4 0. 0.01 0.01 0.08 0. 0.11 0.04
Task 5 0. 0.11 0.01 0.05 0.04 0.01 0.04
Task 6 0.02 0.05 0.05 0.08 0.01 0.04 0.05

Mean 0.03 0.07 0.04 0.06 0.01 0.05

Figure 12:

(0.04, 0.02, 0.01) tasks
(0.04, 0.01, 0.0) figures

Conliontation tables of Sp and Ss similarities between IPA*s and choices.

Ss

A* vs. CH. A* vs. A* A* vs. CH.

R

1

I

A: 0.22 (0.13, 0.46)

A*: 0.12 (0.12, 0.49)

L

A: 0.24 (0.02, 1.21)

A*: 0.29 (0.07, 4.92)
A*+: 0.43 (0.07, 51.03)

G

A: 0.25 (0.12, 5.31)

A*: 0.29 (0.12, 14.5)

Ra

0.23 (0.04)

same

picture

different

pictures

R

I

A: 0.05 (0.07, 1.04)

A*: 0.09 (0.07, 0.03)

I

L

A: 0.04 (0.01, 0.25)
A*: 0.05 (0.03, 0.00)
A*+: 0.06(0.03, 2.83)

G

A: 0.04 (0.01, 5.31)

A*: 0.05 (0.07, 14.6)

Ra

0.04 (0.02)

F-Fisher critical value F(O.01) = 10.04

Figure 13" Parsing diagram for Sp (left) and Ss (right) similarities between IPAs and

human choices. Note the values for IPA* (a combination of three different algorithms,

see text) and IPA*+ (IPA* applied to Figures 4 and 6 only).
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looking at different pictures cohered even less with a mean value of 0.19 for another bottom-anchor, the

G, global value (middle right box). However when different IPAs act on the same picture, their aROIs
were related with a local, L, mean similarity value of 0.29 (upper right box). Local was a critical

measure for our study.

When considering string-editing similarities, Ss, we find (Figure 8, lower right), except for the
trivial R value of 1.00 for the same IPA acting on the same picture, all values approximate the bottom

anchors; both Ra and G values. Although, there may have been coherences between different

(redundant) IPAs acting on a particular picture, this result suggested that the string sequences were not
coherent with the bottom-up algorithmic procedures.

3.3 Human choice and multiple tasks

As described above, the human subjects, all geologically naive laboratory personnel who

volunteered as subjects, were given a set of six different task instructions. They were requested to
select eight regions of interest, pertaining to each terrain picture and to each of the six instructed tasks;

these data were summarized in the parsing diagrams (Figure 9).

/

For the same task (upper panel), and for the same person looking at the same picture the Sp R-
similarity 0.65 and Ss R-similarity was 0.23. This was evidence for the "scanpath theory" now found

with the new paradigm of "human choice". The L-similarities were also significant indicating that

different persons looked at the same picture with somewhat similar scanpaths. The decrease of the
local, L-coefficients 0.48 and 0.13 from the R-values 0.65 and 0.23 indicate that the scanpaths were

somewhat different from person to person. Clearly, again the Ss similarities were less that the Sp
similarities. All of these conclusions were strongly sustained by the relationship between the Anova

test values and F-Fisher critical value (for alpha = 0.01) of 10.04.

When the task results were not segregated, but rather results for all tasks were merged the

similarities become much reduced (lower panel). This strongly supports our use of "task definition" as

an important protocol condition following the famous paper of Yarbus (Figure 109, page 174, Yarbus

1967) in Eye Movements and Vision, Alfred L. Yarbus, Plenum press, NY, 1967) The R-similarity and
the L-similarity were still significant with respect with the F-Fisher critical value. The Sp value
remained higher than the Ss value.

3.4 Algorithms vs. choices

Recall that we explored loci and sequences of aROIs with a wide variety of IPAs; certain of these

IPAs were excellent predictor of human chROIs (Figure 10). Three different algorithms (Figure 10,
upper, middle and lower) were related each to a particular subject and to a particular task. Their Sp

similarity measures were 0.5, 0.88, 0.63, very good coherence indeed. Other algorithms were poor
predictors of human chROIs (Figure 11); two different algorithms were each related to a particular

subject and a to particular task and had low Sp similarity measures: -- Sp equal to 0.13 and 0.0

respectively (Figure 11, upper and lower). These figures served to illustrate the wide range of
individual results we obtained.

On the basis of these large number of measures between algorithms, figures, tasks, and subjects we

selected a combination of three different algorithms (michaelson, edge, symlet) that were combined to

give a single new composite IPA, IPA*.

Next we averaged the similarity measure for Sp (Figure 12, upper) and Ss (lower) in confrontation
tables that averaged over subjects but kept the similarity measures segregated for the six figures and the
six tasks. Again note the uniformly low values for the Ss confrontation table; thus IPA* did not predict

sequences for human choices.
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However, the values for a particular task and for a particualr figure ranged up to a similarity value of

0.61 with an average value of 0.29. Note that the means for particular task averaged over all figures
were fairly consisted in this was supported by a significant F-value. Contrariwise, the means for

particular figures, but for different tasks were not significant correlated by F-test.

Again, we gathered the crucial comparisons between algorithms and human choices together into a

parsing diagram (Figure 13). The ability of the algorithms to predict human choices was demonstrated

by the numbers in the upper right box, L, of the left panel, Sp, for each picture segregated, but for all
tasks combined. The average of all the twenty algorithms was only 0.24; for comparisons, human

choices for different persons, again segregated for pictures but averaged for all tasks was 0.36 (Figure
9). For the combination of the three selected algorithms the value rose to 0.29. Finally, for this

combination applied only to the data relating to Figures 4 and 6, the values rose to 0.43 and the Anova
test showed very considerable significance (51 related to the critical value of 0.01).

This 0.43 value was averaged over the two figures and thus it related more closely, not to values

segregated by picture, L, local, but to values averaged over all pictures, G, global. Note that the A and
A* value were very similar for L and G, so this question was moot. Since we did not selected the

algorithms on the basis of the particular task, this average of all tasks can be considered as a lower
bound of a more careful selection procedure.

4.- DISCUSSION

4.1 Major Accomplishment

. Results so far obtained and described are encouraging. We have accomplished our main goal -- to
demonstrate that bottom-up autonomous algorithms can select and locate ROIs, regions-of-interest,

that are related spatially to those chosen by human viewers. Indeed, in quite a few cases the
algorithms, either particular ones in our original set, or the combination IPA* (of three algorithms)

tentative selected by us as embodying important processes, actually performed very well for individual
pictures. The level of prediction and identification by IPAs (Sp = 0.29) of important chROIs was

almost as close to human as two humans might be expected to be (Sp = 0.36).

Underlying methods. The top-down structural binding of the spatial cognitive models, internal to
the higher level human vision system, provides for the selection of the loci of the chROIs, that is where

the eyes fixated or where the subjects choose important sub-features. With a bottom-up IPA, we are

determining the aROIs in a bottom-up fashion from the picture information in the scene. Our research
document our ability to do this. On what does this ability rest?

First, we developed an initial wide variety of IPAs and demonstrated very little redundancy amongst

them. Second we developed a "selection" procedure based upon a matrix scheme originally developed

to study human visual perception and EMs. The matrix used was Sp and Ss which calculated the
similarity (1-distance) between pairs of ROI sets in terms &their location and sequences respectively.

4.2 Assisting the Mars Rover Exploration

Further we have established this in the context of pictures of Mars terrain and of geological

exploration being carried our by the semi-autonomous Rover vehicle that landed on Mars in July 1997.

Thus, these algorithmically-selected aROIs are now appropriate to the Martian terrain pictures being
viewed and to the tasks of geological interpreters and of supervisory controllers of the remote planetary

vehicle. In the future we plan to develop extensions for more precise task descriptions. We may
recruit experts capable of this refinement of the tasks so that our new list selected algorithms will focus



ona particulartaskwith perceptualandvisualsearchdimensionsandparametersthatareexplicitly
moreclearlyspecified.

4.3 Pictures

We are in the process of developing a corpus of geological pictures and of navigational terrain

pictures so that specified tasks can be clearly attributed to certain regions for testing the algorithms. A
much wider set of pictures, perhaps geological pictures from text books, and a wide inventory
collectible over the Web, should be available for our future studies. Another interesting aspect that we

have begun to look at is the influence of zooming in or out on the structure of navigational or

geological scenes. How much intuitive mental zooming does the human perceptual brain utilize? We
also want to study possible differences between pictures that have a considerable intemal structure or

organization, as for example in paintings of landscapes. These are in contrast to the more random,
unstructured, or disorganized appearance of the planetary pictures we have used in the present report.

This may lead us into interesting hypotheses regarding how the perceptual brain handles pictures with
and without clear structure and organization.

4.4 Human Studies

We are especially interested in obtaining selection of chROIs from trained and experienced subjects.
They should belong to two categories --- professional geologists and professional remote vehicle

navigators. Our group plans to present pictures onto monitor screens at NASA-Ames Research Center
and to collect the data directly via the internet as these professional subjects carry out their selections.

Choice vs Eve Movement Fixations. Another aspect of human studies, wherein we have already

carried out some further studies (Privitera, Azzariti, Stark in preparation), attempts to answer an

important question --- "How different or similar are the chROIs selected by 'conscious' human choice
as compared with 'unconsciously' commanded sets of eye movement, emROIs, and their intervening

fixations or glimpses that naturally are used to scan a picture.

4.5 Further development of IPAs

A planned study, which has been initiated is to modulate the scale and shift multiplier for a number

of our already selected IPAs. These geometrical mapping functions may in some sense dominate the
action of the IPAs and may provide important enrichment to the already wide variety of IPAs we have
assembled. As described in the body of the report, the clustering algorithm plays an important role in

our procedure, in reducing the selected points from 1000 to seven or eight, and in providing an ordering
sequence. We have ongoing some preliminary studies on other varieties of clustering algorithms,

(Krishnan, Privitera, Stark, in preparation) and are testing them to see how they enhance or degrade
selective functions of the IPAs with respect to localization of the aROIs. Finally, we are interested in

trivial modulations of the pictures so as to obtain R, repetitive parsing numbers; this top-anchor may be
as useful as the bottom-anchors, G and Ra, in estimating the range of the similarity indices and in

evaluating significance of the similarity numbers.

4.6 'A posteriori' Construction of IPA Kernels

In the 1950's and 1960's a MAMF procedure was intensely studied (Stark et al. 1962; Okajima et

al. 1965) that used an adaptive routine to essentially capture kernel information from events being
monitored and identified with bottom-up processes. Although these kernels were then one dimensional

for events in time, they have been recently studied by Sun and Stark (personal communication) for two-
dimensional icons in a random visual search field. The coefficients and the procedures resemble
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ANNs, artificial neural networks with some important differences; the network is seg-mented according
to the dimensions of the pre-processed data and the development of the coefficients, under autonomous

(learning without a teacher) processes can be easily visualized and judged.

The convergence therefore is much more rapid and transparent than with more classical neural nets
(and these latter most often learn by means of a teacher administering rewards and punishments. The

adaptive resonance ANN, developed many years later by a researcher in Boston has many elements in

common with the MAMF scheme. We have a plan to try the established MAMF method to develop

alternative sets of structural and statistical kernels for our current well-defined and quantitatively
measurable task.

5.- SUMMARY

We have been able to demonstrate that bottom-up IPAs, image processing algorithms can perform a
new visual task --- to locate aROIs, regions-of-interest. These ROI loci are defined on the basis of a

theory of top-down human vision, the scanpath theory. Further, using measures, -- Sp and Ss, the
similarity of location and ordering, respectively, ---- developed over the years in studying human

perception and the active looking role of eye movements, we can quantify the efficient and efficacious
manner in which IPAs imitate human vision in located ROIs.

The structural binding of internal spatial-cognitive models is accompanied by a sequential binding
that may be further or additionally activated by virtue of the sequential nature of human eye movements
and of attentional shifts. This sequential binding has no parallel in IPAs and our results document that

IPAs do not order the ROIs in a similar sequence to human scanpath: Ss similarity values are closed to

random. Fortunately, one need not imitate this aspect of perception in order to develop useful
application.

In any case, the means to quantify and evaluate IPA performance has been an important part of our

study. These quantitative similarty measures are essential in selecting from the initial wide variety of
IPAs, those particular ones that best serve for a type of picture and for a required task. Note that the

selection depends upon the correlation with actual human chosen chROIs for the same type of picture
and for the same required task to be accomplished.
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